The Spherical Tensor Gradient Operator

نویسنده

  • Ernst Joachim Weniger
چکیده

The spherical tensor gradient operator Y l (∇), which is obtained by replacing the Cartesian components of r by the Cartesian components of ∇ in the regular solid harmonic Y l (r), is an irreducible spherical tensor of rank l. Accordingly, its application to a scalar function produces an irreducible spherical tensor of rank l. Thus, it is in principle sufficient to consider only multicenter integrals of scalar functions: Higher angular momentum states can be generated by differentiation with respect to the nuclear coordinates. Many of the properties of Y l (∇) can be understood easily with the help of an old theorem on differentiation by Hobson [Proc. London Math. Soc. 24, 54 67 (1892)]. It follows from Hobson’s theorem that some scalar functions of considerable relevance as for example the Coulomb potential, Gaussian functions, or reduced Bessel functions produce particularly compact results if Y l (∇) is applied to them. Fourier transformation is very helpful to understand the properties of Y l (∇) since it produces Y l (−ip). It is also possible to apply Y l (∇) to generalized functions, yielding for instance the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor

Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Addition Theorems as Three-Dimensional Taylor Expansions. II. B Functions and Other Exponentially Decaying Functions

Addition theorems can be constructed by doing three-dimensional Taylor expansions according to f(r + r) = exp(r · ∇)f(r). Since, however, one is normally interested in addition theorems of irreducible spherical tensors, the application of the translation operator in its Cartesian form exp(x∂/∂x) exp(y∂/∂y) exp(z∂/∂z) would lead to enormous technical problems. A better alternative consists in us...

متن کامل

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005